4,239 research outputs found

    Micro-doppler-based in-home aided and unaided walking recognition with multiple radar and sonar systems

    Get PDF
    Published in IET Radar, Sonar and Navigation. Online first 21/06/2016.The potential for using micro-Doppler signatures as a basis for distinguishing between aided and unaided gaits is considered in this study for the purpose of characterising normal elderly gait and assessment of patient recovery. In particular, five different classes of mobility are considered: normal unaided walking, walking with a limp, walking using a cane or tripod, walking with a walker, and using a wheelchair. This presents a challenging classification problem as the differences in micro-Doppler for these activities can be quite slight. Within this context, the performance of four different radar and sonar systems – a 40 kHz sonar, a 5.8 GHz wireless pulsed Doppler radar mote, a 10 GHz X-band continuous wave (CW) radar, and a 24 GHz CW radar – is evaluated using a broad range of features. Performance improvements using feature selection is addressed as well as the impact on performance of sensor placement and potential occlusion due to household objects. Results show that nearly 80% correct classification can be achieved with 10 s observations from the 24 GHz CW radar, whereas 86% performance can be achieved with 5 s observations of sonar

    Classical Tensors and Quantum Entanglement I: Pure States

    Full text link
    The geometrical description of a Hilbert space asociated with a quantum system considers a Hermitian tensor to describe the scalar inner product of vectors which are now described by vector fields. The real part of this tensor represents a flat Riemannian metric tensor while the imaginary part represents a symplectic two-form. The immersion of classical manifolds in the complex projective space associated with the Hilbert space allows to pull-back tensor fields related to previous ones, via the immersion map. This makes available, on these selected manifolds of states, methods of usual Riemannian and symplectic geometry. Here we consider these pulled-back tensor fields when the immersed submanifold contains separable states or entangled states. Geometrical tensors are shown to encode some properties of these states. These results are not unrelated with criteria already available in the literature. We explicitly deal with some of these relations.Comment: 16 pages, 1 figure, to appear in Int. J. Geom. Meth. Mod. Phy

    Nonextensive thermodynamic functions in the Schr\"odinger-Gibbs ensemble

    Get PDF
    Schr\"odinger suggested that thermodynamical functions cannot be based on the gratuitous allegation that quantum-mechanical levels (typically the orthogonal eigenstates of the Hamiltonian operator) are the only allowed states for a quantum system [E. Schr\"odinger, Statistical Thermodynamics (Courier Dover, Mineola, 1967)]. Different authors have interpreted this statement by introducing density distributions on the space of quantum pure states with weights obtained as functions of the expectation value of the Hamiltonian of the system. In this work we focus on one of the best known of these distributions, and we prove that, when considered in composite quantum systems, it defines partition functions that do not factorize as products of partition functions of the noninteracting subsystems, even in the thermodynamical regime. This implies that it is not possible to define extensive thermodynamical magnitudes such as the free energy, the internal energy or the thermodynamic entropy by using these models. Therefore, we conclude that this distribution inspired by Schr\"odinger's idea can not be used to construct an appropriate quantum equilibrium thermodynamics.Comment: 32 pages, revtex 4.1 preprint style, 5 figures. Published version with several changes with respect to v2 in text and reference

    Ehrenfest dynamics is purity non-preserving: a necessary ingredient for decoherence

    Get PDF
    We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Ref. 1. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamics makes a system with more than one classical trajectory and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space DD, and on the number of classical trajectories NN of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.Comment: Revtex 4-1, 14 pages, 2 figures. Final published versio

    Foot pressure distributions during walking in African elephants (Loxodonta africana)

    Get PDF
    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples

    Statistics and Nos\'e formalism for Ehrenfest dynamics

    Get PDF
    Quantum dynamics (i.e., the Schr\"odinger equation) and classical dynamics (i.e., Hamilton equations) can both be formulated in equal geometric terms: a Poisson bracket defined on a manifold. In this paper we first show that the hybrid quantum-classical dynamics prescribed by the Ehrenfest equations can also be formulated within this general framework, what has been used in the literature to construct propagation schemes for Ehrenfest dynamics. Then, the existence of a well defined Poisson bracket allows to arrive to a Liouville equation for a statistical ensemble of Ehrenfest systems. The study of a generic toy model shows that the evolution produced by Ehrenfest dynamics is ergodic and therefore the only constants of motion are functions of the Hamiltonian. The emergence of the canonical ensemble characterized by the Boltzmann distribution follows after an appropriate application of the principle of equal a priori probabilities to this case. Once we know the canonical distribution of a Ehrenfest system, it is straightforward to extend the formalism of Nos\'e (invented to do constant temperature Molecular Dynamics by a non-stochastic method) to our Ehrenfest formalism. This work also provides the basis for extending stochastic methods to Ehrenfest dynamics.Comment: 28 pages, 1 figure. Published version. arXiv admin note: substantial text overlap with arXiv:1010.149

    Optimal body size with respect to maximal speed for the yellow-spotted monitor lizard (Varanus panoptes; varanidae)

    Get PDF
    Studies of locomotor performance often link variation in morphology with ecology. While maximum sprint speed is a commonly used performance variable, the absolute limits for this performance trait are not completely understood. Absolute maximal speed has often been shown to increase linearly with body size, but several comparative studies covering a large range of body sizes suggest that maximal speed does not increase indefinitely with body mass but rather reaches an optimum after which speed declines. Because of the comparative nature of these studies, it is difficult to determine whether this decrease is due to biomechanical constraints on maximal speed or is a consequence of phylogenetic inertia or perhaps relaxed selection for lower maximal speed at large body size. To explore this issue, we have examined intraspecific variations in morphology, maximal sprint speed, and kinematics for the yellowspotted monitor lizard Varanus panoptes, which varied in body mass from 0.09 to 5.75 kg. We show a curvilinear relationship between body size and absolute maximal sprint speed with an optimal body mass with respect to speed of 1.245 kg. This excludes the phylogenetic inertia hypothesis, because this effect should be absent intraspecifically, while supporting the biomechanical constraints hypothesis. The relaxed selection hypothesis cannot be excluded if there is a size-based behavioral shift intraspecifically, but the biomechanical constraints hypothesis is better supported from kinematic analyses. Kinematic measurements of hind limb movement suggest that the distance moved by the body during the stance phase may limit maximum speed. This limit is thought to be imposed by a decreased ability of the bones and muscles to support body mass for larger lizards

    Marine Biodiversity and Ecosystem Health of Ilhas Selvagens, Portugal

    Get PDF
    In September 2015, National Geographic's Pristine Seas project, in conjunction with the Instituto Universitário-Portugal, The Waitt Institute, the University of Western Australia, and partners conducted a comprehensive assessment of the rarely surveyed Ilhas Selvagens to explore the marine environment, especially the poorly understood deep sea and open ocean areas, and quantify the biodiversity of the nearshore marine environment

    Enzymes as Feed Additive to Aid in Responses Against Eimeria Species in Coccidia-Vaccinated Broilers Fed Corn-Soybean Meal Diets with Different Protein Levels

    Get PDF
    This research aimed to evaluate the effects of adding a combination of exogenous enzymes to starter diets varying in protein content and fed to broilers vaccinated at day of hatch with live oocysts and then challenged with mixed Eimeria spp. Five hundred four 1-d-old male Cobb-500 chickens were distributed in 72 cages. The design consisted of 12 treatments. Three anticoccidial control programs [ionophore (IO), coccidian vaccine (COV), and coccidia-vaccine + enzymes (COV + EC)] were evaluated under 3 CP levels (19, 21, and 23%), and 3 unmedicated-uninfected (UU) negative controls were included for each one of the protein levels. All chickens except those in unmedicated-uninfected negative controls were infected at 17 d of age with a mixed oral inoculum of Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Live performance, lesion scores, oocyst counts, and samples for gut microflora profiles were evaluated 7 d postinfection. Ileal digestibility of amino acids (IDAA) was determined 8 d postinfection. Microbial communities (MC) were analyzed by G + C%, microbial numbers were counted by flow cytometry, and IgA concentrations were measured by ELISA. The lowest CP diets had poorer (P ≤ 0.001) BW gain and feed conversion ratio in the preinfection period. Coccidia-vaccinated broilers had lower performance than the ones fed ionophore diets during pre- and postchallenge periods. Intestinal lesion scores were affected (P ≤ 0.05) by anticoccidial control programs, but responses changed according to gut section. Feed additives or vaccination had no effect (P ≥ 0.05) on IDAA, and diets with 23% CP had the lowest (P ≤ 0.001) IDAA. Coccidial infection had no effect on MC numbers in the ileum but reduced MC numbers in ceca and suppressed ileal IgA production. The COV + EC treatment modulated MC during mixed coccidiosis infection but did not significantly improve chicken performance. Results indicated that feed enzymes may be used to modulate the gut microflora of cocci-vaccinated broiler chickens
    • …
    corecore